
1

Introduction 

Why Data Engineering?

“The purpose of computing is insight, not numbers.” 

- Richard Hamming [1]



2

In the modern world, nearly every interaction generates data. When 

you stream music, order food through an app, or even tap your 

credit card at the store, those small actions produce digital traces. 

Yet raw data on its own does not drive decisions or build products. 

The systems that collect, organize, and transform it into something 

useful are designed by data engineers. They are the professionals 

who create the pipelines and platforms that turn chaotic informa-

tion into business value.

	 Data engineering is no longer a niche technical role. It’s one 

of the fastest growing careers in technology and business. While 

the U.S. Bureau of Labor Statistics (BLS) doesn’t publish a separate 

category for data engineers, related roles provide a strong indicator 

of growth. For example, employment of data scientists is projected 

to grow 34 percent from 2024 to 2034, much faster than the average 

for all occupations. Database administrators and architects are ex-

pected to grow at about 4 percent, and software developers at about 

15–16 percent over the same period [2], [3]. Industry reports also 

highlight that demand for data engineers is expanding rapidly, with 

many organizations creating new roles as they recognize the need 

for clean, reliable, and well-structured data to compete in a digital 

economy.

	 The career outlook is equally attractive when it comes to 

compensation. The average salary for data engineers in the United 

States is about 130,000 dollars per year, with entry-level engineers 

starting around 100,000 dollars and senior engineers earning more 

than 150,000 dollars, according to Glassdoor data [4]. In technology 

hubs such as the San Francisco Bay Area, salaries can rise above 

200,000 dollars, especially at major companies like Google, Meta, 

and Dropbox. This level of compensation reflects the critical role 

data engineers play in modern organizations, where a broken pipe-

line can mean millions in lost revenue or missed insights.

	 What sets data engineering apart is its centrality. Without 

data engineers, data science models cannot be trained, dashboards 

cannot be built, and executives cannot make informed decisions. 

The entire ecosystem of analytics, artificial intelligence (AI), and 



3

digital transformation depends on the reliability of the infrastruc-

ture that data engineers design. They are often described as the 

backbone of successful organizations because they enable everyone 

else to succeed with data.

	 For those considering a career path, data engineering offers 

more than stability and salary. It provides the opportunity to work 

at the intersection of technology, strategy, and innovation. Whether 

in finance, healthcare, e-commerce, or government, every sector is 

leaning on data engineering to power its future. That makes this a 

field worth mastering.

	 In this book, I’ll walk you through the world of data engi-

neering, from its foundational concepts to real-world applications. 

We’ll explore how raw data is extracted, transformed, and loaded 

into systems where it can deliver value. Along the way, I’ll break 

down the modern data stack, highlight the tools that power today’s 

most data-driven companies, and walk through the principles that 

separate good pipelines from great ones. Whether you’re just start-

ing out or looking to deepen your expertise, this book aims to make 

the complex systems behind data engineering both accessible and 

actionable.



4



5

Chapter 1 

History of Data Engineering

“The best way to predict the future is to invent it.” 

- Alan Kay [5]



6

Historic Data Engineering
Every company today claims it wants to “become more data-driv-

en.” But the truth is, people have been data-driven for thousands 

of years.

	 We observed, measured, remembered, and acted on infor-

mation out of necessity. Spotting animal tracks, tracking seasons, 

and learning from patterns in nature weren’t optional. Rather, it 

was necessary for survival. In many ways, data engineering is just a 

modern extension of those ancient instincts, only now the datasets 

are bigger, and the stakes are measured in dollars instead of dinner.

	 For most of human history, data was physical: etched on 

clay tablets, scribbled in ledgers, stored in human memory. Ancient 

Egyptians recorded grain inventories and cultivable land [6]. Bab-

ylonians tracked celestial movements to predict seasons [7]. The 

Ancient Greeks kept detailed recorded voting outcomes from early 

democratic assemblies [8]. Early data “engineering” was done with 

pen and parchment and required discipline, logic, and long hours. 

These systems are archaic to us, sure, but they had structure: col-

umns, rows, dates, categories. The ideas behind data schemas ex-

isted long before relational databases did.

	 While the term “data engineering” didn’t exist until much 

later, the functions associated with it like moving data between 

systems, defining data structures, and ensuring consistency were 

already present in the era of hierarchical and network databases in 

the mid 20th century.

	 These early systems, like IBM’s Information Management 

System (IMS) conceptualized in the 1960s, which stored data in a 

tree-like structure, and the CODASYL network model, which used a 

more flexible graph of predefined relationships, required engineers 

to manually define relationships, optimize access paths, and write 

complex low-level procedural code to retrieve data [9], [10]. Work-

ing with these databases demanded deep technical knowledge of the 

schema and system architecture, which meant that in practice, data 

access was limited to a small group of trained specialists.



7

	 The shift from this rigid, expert-only approach to the more 

accessible and modular form of data engineering we recognize today 

didn’t truly begin until the invention of the relational database by 

Edgar F. Codd, a British computer scientist at IBM, in the 1970s [11].

	 In his revolutionary paper, A Relational Model of Data for Large 

Shared Data Banks, Codd proposed a new model that directly ad-

dressed the limitations of the hierarchical and network databases 

that came before it. Specifically, he wrote: 

“The relational view (or model) of data … appears to be superior 

in several respects to the graph or network model … It provides a 

means of describing data with its natural structure only—that is, 

without superimposing any additional structure for machine repre-

sentation purposes [12].”

Figure 1: Simple CODAYSL Model



8

	 What Codd highlighted here was simple but profound. He 

argued that data should be modeled based on its real-world mean-

ing, not the internal logic of how machines store or retrieve it. In 

doing so, he separated the logical structure of data (the relationship 

it represents) from its physical storage (how it’s actually saved on 

disk).

	 This principle changed everything. It meant that engineers 

no longer had to manually define traversal paths, worry about 

pointer chains, or embed access logic directly into their application 

code. Instead, they could describe what data they wanted, and let 

the database engine figure out how to get it.

	 As a continuation of Codd’s work, a team of IBM research-

ers began working on an experimental relational database system 

called System R in 1974 [13], [14]. The project was a success. Not 

only did it prove that relational databases could achieve competitive 

performance, it also laid the groundwork for what would eventually 

become the Structured Query Language or SQL, now the industry 

standard for interacting with relational data today. 

	 Originally dubbed the Structured English Querying Language 

or SEQUEL, the researchers designed a language that allowed users 

to interact with data in a human-friendly way [15]. By using phras-

Figure 2: The Simple Relational Model 



9

es like SELECT, WHERE, JOIN, etc. which resembled plain English, 

they aimed to make querying accessible to non-technical users [16]. 

This eliminated the need for writing complex procedural code and 

allowed people to simply describe the data they wanted, rather than 

detailing how to retrieve it. 

	 Due to a trademark discrepancy with a UK-based aerospace 

company, IBM dropped the vowels from SEQUEL and renamed the 

language SQL to avoid legal complications [15]. Despite the change 

in spelling, many still continue to pronounce it as “sequel.”

	 The success of System R and SQL didn’t stay confined to 

IBM’s labs. By the early 1980s, companies like Oracle, Ingres, and 

IBM itself had begun commercializing relational databases. SQL be-

came the de facto standard, adopted not just by technologists but 

by entire organizations. It became the foundation for countless en-

terprise systems, from payroll to inventory management and helped 

businesses turn operational data into strategic insight.

	 This was the era when the data engineer role started to take 

shape. While it wasn’t always called that, professionals were now 

tasked with designing schemas, building ETL pipelines, maintain-

ing data integrity, and making data accessible across departments.

	 As organizations began collecting more data than ever before, 

a new challenge emerged: how do you store and analyze massive 

volumes of historical data across different systems, departments, 

and use cases? Traditional relational databases were optimized for 

transactions, that being things like updating a record, retrieving a 

customer profile, or processing an order. But they weren’t designed 

to support large-scale analytics over time.

Modern Data Engineering
The solution came in the concept of data warehousing, formalized 

in the 1990s by computer scientist Bill Inmon, who is widely re-

garded as the father of the data warehouse. According to Inmon, a 

data warehouse is not a specific technology but an architectural ap-

proach to managing data to support analysis and decision-making. 

As he defines it in Building the Data Warehouse, “A data warehouse is 



10

a subject-oriented, integrated, nonvolatile, and time-variant col-

lection of data in support of management’s decisions.”

	 Inmon emphasized that this distinction between architec-

ture and technology is essential to understand. As he elegantly puts 

it: “There is the architecture, then there is the underlying technolo-

gy, and they are two very different things. Unquestionably, there is 

a relationship between data warehousing and database technology, 

but they are most certainly not the same. Data warehousing re-

quires the support of many different kinds of technology [17].”

	 Inmon was a proponent of a top-down approach to data 

warehousing, where an enterprise-wide data model is designed 

first, and individual data marts are created afterward to serve spe-

cific business needs. Instead of focusing on just one department 

at a time, the company would take a big-picture view and design 

the structure of the warehouse to serve the entire organization. 

Once that foundation is in place, smaller pieces of the system (data 

marts) can be built to serve the needs of individual teams like sales, 

marketing, or customer service.

	 While a good idea in theory, in practice it faced many limita-

tions. For example, when companies attempted to implement this, 

they often ran into the problem of long development timelines. Be-

cause the data warehouse had to be fully designed and built to serve 

Figure 3: Inmon’s Top-down Approach



11

the entire organization before any one team could use it, projects 

could take months or even years before delivering any real business 

value.

	 In addition to the delays, the initial cost of building such 

a large, centralized system was substantial. It required significant 

investment in infrastructure, tools, and specialized personnel. The 

approach also lacked flexibility. Business needs would often shift 

during development, but the rigid structure made it difficult to 

adapt quickly. Teams were frequently left waiting for updates or 

changes to be modeled and approved across the entire system before 

they could move forward [18].

	 These challenges left many organizations searching for a 

more practical and responsive alternative, something that could 

show results sooner and adjust as the business evolved.

	 Inmon’s colleague Ralph Kimball proposed a different strat-

egy, one that addressed many of the limitations found in the top-

down model [19]. Instead of starting with a centralized data ware-

house, Kimball suggested building individual data marts first. Each 

data mart would focus on a specific business area, such as sales, 

marketing, or inventory. These marts could then be connected using 

shared dimensions and rolled up into a broader data warehouse over 

time [20].

Figure 4: Kimball’s Bottom-up Approach



12

	 This approach allowed for a much more agile way of building 

data infrastructure. Making changes no longer required reworking 

the entire system. Instead, teams could update or expand just the 

relevant data mart. The initial setup was also faster, making it eas-

ier for organizations to deliver value to the business early in the 

process, rather than waiting months or years for a fully centralized 

warehouse to be completed [21].

	 As data volumes continued to grow in the 2000s, traditional 

relational data warehouses began to show their limitations. Web-

scale companies were now dealing with data that arrived contin-

uously, in massive quantities, and in a variety of formats. This 

included user activity logs, clickstream data, product images, and 

free-form text which was far more complex than the clean, struc-

tured tables that warehouses were built to handle. These systems 

were expensive to scale, slow to adapt, and poorly suited for re-

al-time or semi-structured data.

	 In response, engineers began turning to distributed com-

puting systems, which distribute work across multiple machines 

to handle large workloads. Instead of relying on a single powerful 

server, these systems break a large task into smaller parts and run 

them in parallel on a cluster of computers. This is what gives the 

approach its name. It distributes both data and processing across a 

system.

	 This made it possible to store and analyze far larger datasets 

than traditional systems could handle. However, it also introduced 

new challenges. Engineers now had to figure out how to split the 

work effectively, manage coordination between machines, and de-

sign systems that were fault-tolerant (handle failures without los-

ing progress or data). Despite the complexity, this shift enabled a 

level of scalability and speed that centralized warehouses simply 

could not achieve.

	 One of the most influential breakthroughs came from Goo-

gle in 2004 with the introduction of the MapReduce abstraction. In 

the widely influential paper, MapReduce: Simplified Data Processing on 

Large Clusters, Google engineers Jeffrey Dean and Sanjay Ghemawat 



13

outlined a programming model that made it possible to process vast 

amounts of data in parallel across distributed systems [22]. 

	 The key idea was to split work into two simple operations: 

map, which applies a function to each record in a dataset and pro-

duces intermediate key-value pairs, and reduce, which aggregates 

or summarizes those pairs by key. For example, mapping could 

count the occurrence of each word in a document, while reducing 

would sum those counts across all documents. This approach ab-

stracted away many of the complexities of distributed computing, 

allowing engineers to focus on writing simple “map” and “reduce” 

functions while the underlying system handled fault tolerance, data 

distribution, and execution.

	 The authors described a key challenge of the time: although 

the computations themselves were often conceptually simple, they 

became difficult to scale. As they put it, “The issues of how to par-

allelize the computation, distribute the data, and handle failures 

conspire to obscure the original simple computation with large 

amounts of complex code.” MapReduce offered a way to simplify 

this, allowing developers to express their logic cleanly while the 

system took care of the difficult distributed systems engineering 

behind the scenes.

Figure 5: Simple MapReduce Example



14

	 Inspired by the MapReduce paper, engineer Doug Cutting, 

along with Mike Cafarella, began building an open-source imple-

mentation. When the system outgrew its original purpose, they 

spun it out into a new Apache project, which Cutting named Ha-

doop, after his son’s toy elephant [23].

	 With support from Yahoo!, Hadoop rapidly matured. As Cut-

ting later reflected on his website, “After one year, Hadoop was 

used daily by many research groups within Yahoo!. After two years 

it generated Yahoo!’s web search index, achieving web-scale. Now, 

after three years, Hadoop holds the big-data sort record and the 

project has become a de-facto industry standard for big-data com-

puting, used by scores of companies [24].”

	 The success of Hadoop was driven by Google’s ideas and the 

engineering talent at Yahoo!. Their work made it possible for orga-

nizations outside of Big Tech to process data at scale using afford-

able, distributed infrastructure. 

	 Despite its massive impact, Hadoop came with real chal-

lenges. It was powerful, but complex. Running a Hadoop cluster 

required deep technical expertise and significant operational over-

head. Jobs were written in Java, making it inaccessible for analysts 

and business users. It was also fundamentally built for batch pro-

cessing, which made it less suited for real-time analytics. As data 

grew faster and more diverse, and as companies sought more agile, 

cloud-friendly solutions, new tools began to emerge that prioritized 

simplicity, speed, and accessibility [25].

	 One of the most significant developments during this pe-

riod was the emergence of Apache Spark. Initially developed at UC 

Berkeley’s AMPLab in 2009, deployed in production by 2010, and 

later donated to the Apache Software Foundation in 2013, Spark was 

created to overcome many of the limitations of Hadoop and Ma-

pReduce.

	 Unlike previous systems, which required writing interme-

diate results to disk between steps, Spark supported running mul-

tiple operations over the same dataset in memory. This made it 

significantly more efficient for many workloads, especially those 



15

involving iterative processing like machine learning or data explo-

ration. Spark introduced a flexible programming model through a 

concept called resilient distributed datasets (RDDs), which allowed 

for fault-tolerant, parallel computation.

	 Perhaps even more importantly, Spark offered unified APIs 

in accessible languages like Python and Scala, expanding its usabili-

ty beyond Java developers. As of today, Spark supports Python, SQL, 

Scala, Java, and R, making it one of the most versatile platforms in 

the data engineering ecosystem.

	 Spark could handle batch, streaming, and interactive big 

data workloads, making it far more adaptable than MapReduce. It 

quickly became a popular choice for building ETL pipelines, pow-

ering streaming machine learning workflows, and scaling analytics 

efforts. While Spark retained compatibility with the Hadoop Dis-

tributed File System (HDFS), its emphasis on speed, flexibility, and 

developer productivity marked a major shift in how modern data 

systems were built [26].

	 Among the earliest breakthroughs in cloud-native analytics 

was Google BigQuery, launched in 2011. Based on Google’s Dremel 

technology, BigQuery introduced a fully managed, serverless ap-

proach to querying massive datasets with SQL [27]. Around the 

same time, Amazon Redshift, launched in 2012, brought data ware-

housing to the Amazon Web Services ecosystem, allowing teams to 

migrate their analytical workloads into the cloud [28].

	 A few years later, Snowflake redefined expectations with 

a platform designed from the ground up for cloud computing. By 

separating storage from compute, Snowflake made it possible to 

scale workloads up or down instantly and support multiple users or 

teams without performance bottlenecks.

	 As these cloud data warehouses gained adoption, they were 

often paired with modern business intelligence platforms like Tab-

leau, Microsoft Power BI, and Google Looker. These tools gave an-

alysts and stakeholders the ability to explore data visually, build 

dashboards, and generate reports directly from the warehouse. This 

convergence of scalable storage, familiar query languages, and in-



16

tuitive visualization marked the beginning of the modern analytics 

era.

	 And that brings us to where we are today. Data engineering 

is no longer just about moving data from one place to another. It’s 

about designing systems that are scalable, reliable, and accessible 

across entire organizations. Engineers are expected to work across 

cloud platforms, orchestrate ETL/ELT workflows, maintain data 

quality, and empower analysts and stakeholders through well-mod-

eled, accessible datasets.

	 The history of data engineering is the story of how we’ve 

learned to tame complexity at ever greater scales. What began as 

marks on clay tablets and ink in ledgers has evolved into massively 

parallel systems, real-time pipelines, and cloud-native platforms 

that power decisions across every modern industry. Each era, from 

relational databases to Hadoop to Spark and the modern data stack, 

emerged to solve the limitations of the last.

	 Today, data engineers sit at the center of this evolution. 

They build enterprise-grade systems that move and transform data, 

while also ensuring its reliability, accessibility, and trustworthiness 

across the organization. They are connectors between raw numbers 

and real-world insight.

	 Understanding how we got here provides context and direc-

tion for the future of our profession. The challenges we face today, 

whether that be scaling machine learning systems or maintaining 

data quality in real time, echo the same themes: how to handle more 

data, faster, with fewer errors, and greater impact. 


