Introduction

Why Data Engineering?

“The purpose of computing is insight, not numbers.”

- Richard Hamming [1]



In the modern world, nearly every interaction generates data. When
you stream music, order food through an app, or even tap your
credit card at the store, those small actions produce digital traces.
Yet raw data on its own does not drive decisions or build products.
The systems that collect, organize, and transform it into something
useful are designed by data engineers. They are the professionals
who create the pipelines and platforms that turn chaotic informa-
tion into business value.

Data engineering is no longer a niche technical role. It’s one
of the fastest growing careers in technology and business. While
the U.S. Bureau of Labor Statistics (BLS) doesn’t publish a separate
category for data engineers, related roles provide a strong indicator
of growth. For example, employment of data scientists is projected
to grow 34 percent from 2024 to 2034, much faster than the average
for all occupations. Database administrators and architects are ex-
pected to grow at about 4 percent, and software developers at about
15-16 percent over the same period [2], [3]. Industry reports also
highlight that demand for data engineers is expanding rapidly, with
many organizations creating new roles as they recognize the need
for clean, reliable, and well-structured data to compete in a digital
economy.

The career outlook is equally attractive when it comes to
compensation. The average salary for data engineers in the United
States is about 130,000 dollars per year, with entry-level engineers
starting around 100,000 dollars and senior engineers earning more
than 150,000 dollars, according to Glassdoor data [4]. In technology
hubs such as the San Francisco Bay Area, salaries can rise above
200,000 dollars, especially at major companies like Google, Meta,
and Dropbox. This level of compensation reflects the critical role
data engineers play in modern organizations, where a broken pipe-
line can mean millions in lost revenue or missed insights.

What sets data engineering apart is its centrality. Without
data engineers, data science models cannot be trained, dashboards
cannot be built, and executives cannot make informed decisions.
The entire ecosystem of analytics, artificial intelligence (AI), and

2



digital transformation depends on the reliability of the infrastruc-
ture that data engineers design. They are often described as the
backbone of successful organizations because they enable everyone
else to succeed with data.

For those considering a career path, data engineering offers
more than stability and salary. It provides the opportunity to work
at the intersection of technology, strategy, and innovation. Whether
in finance, healthcare, e-commerce, or government, every sector is
leaning on data engineering to power its future. That makes this a
field worth mastering.

In this book, I’ll walk you through the world of data engi-
neering, from its foundational concepts to real-world applications.
We’ll explore how raw data is extracted, transformed, and loaded
into systems where it can deliver value. Along the way, I’ll break
down the modern data stack, highlight the tools that power today’s
most data-driven companies, and walk through the principles that
separate good pipelines from great ones. Whether you’re just start-
ing out or looking to deepen your expertise, this book aims to make
the complex systems behind data engineering both accessible and
actionable.






Chapter 1
History of Data Engineering

“The best way to predict the future is to invent it.”

- Alan Kay [5]



Historic Data Engineering

Every company today claims it wants to “become more data-driv-
en.” But the truth is, people have been data-driven for thousands
of years.

We observed, measured, remembered, and acted on infor-
mation out of necessity. Spotting animal tracks, tracking seasons,
and learning from patterns in nature weren’t optional. Rather, it
was necessary for survival. In many ways, data engineering is just a
modern extension of those ancient instincts, only now the datasets
are bigger, and the stakes are measured in dollars instead of dinner.

For most of human history, data was physical: etched on
clay tablets, scribbled in ledgers, stored in human memory. Ancient
Egyptians recorded grain inventories and cultivable land [6]. Bab-
ylonians tracked celestial movements to predict seasons [7]. The
Ancient Greeks kept detailed recorded voting outcomes from early
democratic assemblies [8]. Early data “engineering” was done with
pen and parchment and required discipline, logic, and long hours.
These systems are archaic to us, sure, but they had structure: col-
umns, rows, dates, categories. The ideas behind data schemas ex-
isted long before relational databases did.

While the term “data engineering” didn’t exist until much
later, the functions associated with it like moving data between
systems, defining data structures, and ensuring consistency were
already present in the era of hierarchical and network databases in
the mid 20th century.

These early systems, like IBM’s Information Management
System (IMS) conceptualized in the 1960s, which stored data in a
tree-like structure, and the CODASYL network model, which used a
more flexible graph of predefined relationships, required engineers
to manually define relationships, optimize access paths, and write
complex low-level procedural code to retrieve data [9], [10]. Work-
ing with these databases demanded deep technical knowledge of the
schema and system architecture, which meant that in practice, data
access was limited to a small group of trained specialists.

6



Customer

Customer_ID

Name

Places

Order

Order_ID

Date

Contains

Product

Product_ID

Price

Figure 1: Simple CODAYSL Model

The shift from this rigid, expert-only approach to the more
accessible and modular form of data engineering we recognize today
didn’t truly begin until the invention of the relational database by
Edgar F. Codd, a British computer scientist at IBM, in the 1970s [11].

In his revolutionary paper, A Relational Model of Data for Large
Shared Data Banks, Codd proposed a new model that directly ad-
dressed the limitations of the hierarchical and network databases
that came before it. Specifically, he wrote:

“The relational view (or model) of data ... appears to be superior
in several respects to the graph or network model ... It provides a
means of describing data with its natural structure only—that is,
without superimposing any additional structure for machine repre-
sentation purposes [12].”



Primary Key

Class Schedule Type

Calculus MWF Lecture

Data Engineering Th Lab

Computer Science TTh Lecture
Attributes

Figure 2: The Simple Relational Model

What Codd highlighted here was simple but profound. He
argued that data should be modeled based on its real-world mean-
ing, not the internal logic of how machines store or retrieve it. In
doing so, he separated the logical structure of data (the relationship
it represents) from its physical storage (how it’s actually saved on
disk).

This principle changed everything. It meant that engineers
no longer had to manually define traversal paths, worry about
pointer chains, or embed access logic directly into their application
code. Instead, they could describe what data they wanted, and let
the database engine figure out how to get it.

As a continuation of Codd’s work, a team of IBM research-
ers began working on an experimental relational database system
called System R in 1974 [13], [14]. The project was a success. Not
only did it prove that relational databases could achieve competitive
performance, it also laid the groundwork for what would eventually
become the Structured Query Language or SQL, now the industry
standard for interacting with relational data today.

Originally dubbed the Structured English Querying Language
or SEQUEL, the researchers designed a language that allowed users
to interact with data in a human-friendly way [15]. By using phras-

8



es like SELECT, WHERE, JOIN, etc. which resembled plain English,
they aimed to make querying accessible to non-technical users [16].
This eliminated the need for writing complex procedural code and
allowed people to simply describe the data they wanted, rather than
detailing how to retrieve it.

Due to a trademark discrepancy with a UK-based aerospace
company, IBM dropped the vowels from SEQUEL and renamed the
language SQL to avoid legal complications [15]. Despite the change
in spelling, many still continue to pronounce it as “sequel.”

The success of System R and SQL didn’t stay confined to
IBM’s labs. By the early 1980s, companies like Oracle, Ingres, and
IBM itself had begun commercializing relational databases. SQL be-
came the de facto standard, adopted not just by technologists but
by entire organizations. It became the foundation for countless en-
terprise systems, from payroll to inventory management and helped
businesses turn operational data into strategic insight.

This was the era when the data engineer role started to take
shape. While it wasn’t always called that, professionals were now
tasked with designing schemas, building ETL pipelines, maintain-
ing data integrity, and making data accessible across departments.

As organizations began collecting more data than ever before,
a new challenge emerged: how do you store and analyze massive
volumes of historical data across different systems, departments,
and use cases? Traditional relational databases were optimized for
transactions, that being things like updating a record, retrieving a
customer profile, or processing an order. But they weren’t designed
to support large-scale analytics over time.

Modern Data Engineering

The solution came in the concept of data warehousing, formalized
in the 1990s by computer scientist Bill Inmon, who is widely re-
garded as the father of the data warehouse. According to Inmon, a
data warehouse is not a specific technology but an architectural ap-
proach to managing data to support analysis and decision-making.
As he defines it in Building the Data Warehouse, “A data warehouse is

9



a subject-oriented, integrated, nonvolatile, and time-variant col-
lection of data in support of management’s decisions.”

Inmon emphasized that this distinction between architec-
ture and technology is essential to understand. As he elegantly puts
it: “There is the architecture, then there is the underlying technolo-
gy, and they are two very different things. Unquestionably, there is
a relationship between data warehousing and database technology,
but they are most certainly not the same. Data warehousing re-
quires the support of many different kinds of technology [17].”

Inmon was a proponent of a top-down approach to data
warehousing, where an enterprise-wide data model is designed
first, and individual data marts are created afterward to serve spe-
cific business needs. Instead of focusing on just one department
at a time, the company would take a big-picture view and design
the structure of the warehouse to serve the entire organization.
Once that foundation is in place, smaller pieces of the system (data
marts) can be built to serve the needs of individual teams like sales,
marketing, or customer service.

While a good idea in theory, in practice it faced many limita-
tions. For example, when companies attempted to implement this,
they often ran into the problem of long development timelines. Be-
cause the data warehouse had to be fully designed and built to serve

Source 1 Data Mart 1

S

Data
Data Mart 2
Source 2 ETL Warehouse

Source 3/ Data Mart 3

Figure 3: Inmon’s Top-down Approach

10



the entire organization before any one team could use it, projects
could take months or even years before delivering any real business
value.

In addition to the delays, the initial cost of building such
a large, centralized system was substantial. It required significant
investment in infrastructure, tools, and specialized personnel. The
approach also lacked flexibility. Business needs would often shift
during development, but the rigid structure made it difficult to
adapt quickly. Teams were frequently left waiting for updates or
changes to be modeled and approved across the entire system before
they could move forward [18].

These challenges left many organizations searching for a
more practical and responsive alternative, something that could
show results sooner and adjust as the business evolved.

Inmon’s colleague Ralph Kimball proposed a different strat-
egy, one that addressed many of the limitations found in the top-
down model [19]. Instead of starting with a centralized data ware-
house, Kimball suggested building individual data marts first. Each
data mart would focus on a specific business area, such as sales,
marketing, or inventory. These marts could then be connected using
shared dimensions and rolled up into a broader data warehouse over
time [20].

Source 1 \ Data Mart 1 \

Source 2 ETL Data Mart 2 Data
Warehouse

/ Data Mart 3/
Source 3

Figure 4: Kimball’s Bottom-up Approach

11



This approach allowed for a much more agile way of building
data infrastructure. Making changes no longer required reworking
the entire system. Instead, teams could update or expand just the
relevant data mart. The initial setup was also faster, making it eas-
ier for organizations to deliver value to the business early in the
process, rather than waiting months or years for a fully centralized
warehouse to be completed [21].

As data volumes continued to grow in the 2000s, traditional
relational data warehouses began to show their limitations. Web-
scale companies were now dealing with data that arrived contin-
uously, in massive quantities, and in a variety of formats. This
included user activity logs, clickstream data, product images, and
free-form text which was far more complex than the clean, struc-
tured tables that warehouses were built to handle. These systems
were expensive to scale, slow to adapt, and poorly suited for re-
al-time or semi-structured data.

In response, engineers began turning to distributed com-
puting systems, which distribute work across multiple machines
to handle large workloads. Instead of relying on a single powerful
server, these systems break a large task into smaller parts and run
them in parallel on a cluster of computers. This is what gives the
approach its name. It distributes both data and processing across a
system.

This made it possible to store and analyze far larger datasets
than traditional systems could handle. However, it also introduced
new challenges. Engineers now had to figure out how to split the
work effectively, manage coordination between machines, and de-
sign systems that were fault-tolerant (handle failures without los-
ing progress or data). Despite the complexity, this shift enabled a
level of scalability and speed that centralized warehouses simply
could not achieve.

One of the most influential breakthroughs came from Goo-
gle in 2004 with the introduction of the MapReduce abstraction. In
the widely influential paper, MapReduce: Simplified Data Processing on
Large Clusters, Google engineers Jeffrey Dean and Sanjay Ghemawat

12



outlined a programming model that made it possible to process vast
amounts of data in parallel across distributed systems [22].

The key idea was to split work into two simple operations:
map, which applies a function to each record in a dataset and pro-
duces intermediate key-value pairs, and reduce, which aggregates
or summarizes those pairs by key. For example, mapping could
count the occurrence of each word in a document, while reducing
would sum those counts across all documents. This approach ab-
stracted away many of the complexities of distributed computing,
allowing engineers to focus on writing simple “map” and “reduce”
functions while the underlying system handled fault tolerance, data
distribution, and execution.

Mapper 1 Reducer 1
{ GEiErsf) ("data",2),
Ll ("eng",2),
ceh e
(fun”1) Shuffle/Group o
Input ("data”, [1,1]), d—L“ u
data, eng, is, ("eng”, [1,1]), ata_—
fun, data, ("is", [1,1]), e'ngaz
eng, is, ("fun”, [1]), fIS—_1
powerful ("powerful’, un= ~
powerful=1
Mapper 2 )
("data”,1), Reducer 2
("eng’,1), ("fun”1),
("is",1), ("powerful,1)
("powerful",1)

Figure 5: Simple MapReduce Example

The authors described a key challenge of the time: although
the computations themselves were often conceptually simple, they
became difficult to scale. As they put it, “The issues of how to par-
allelize the computation, distribute the data, and handle failures
conspire to obscure the original simple computation with large
amounts of complex code.” MapReduce offered a way to simplify
this, allowing developers to express their logic cleanly while the
system took care of the difficult distributed systems engineering
behind the scenes.

13



Inspired by the MapReduce paper, engineer Doug Cutting,
along with Mike Cafarella, began building an open-source imple-
mentation. When the system outgrew its original purpose, they
spun it out into a new Apache project, which Cutting named Ha-
doop, after his son’s toy elephant [23].

With support from Yahoo!, Hadoop rapidly matured. As Cut-
ting later reflected on his website, “After one year, Hadoop was
used daily by many research groups within Yahoo!. After two years
it generated Yahoo!’s web search index, achieving web-scale. Now,
after three years, Hadoop holds the big-data sort record and the
project has become a de-facto industry standard for big-data com-
puting, used by scores of companies [24].”

The success of Hadoop was driven by Google’s ideas and the
engineering talent at Yahoo!. Their work made it possible for orga-
nizations outside of Big Tech to process data at scale using afford-
able, distributed infrastructure.

Despite its massive impact, Hadoop came with real chal-
lenges. It was powerful, but complex. Running a Hadoop cluster
required deep technical expertise and significant operational over-
head. Jobs were written in Java, making it inaccessible for analysts
and business users. It was also fundamentally built for batch pro-
cessing, which made it less suited for real-time analytics. As data
grew faster and more diverse, and as companies sought more agile,
cloud-friendly solutions, new tools began to emerge that prioritized
simplicity, speed, and accessibility [25].

One of the most significant developments during this pe-
riod was the emergence of Apache Spark. Initially developed at UC
Berkeley’s AMPLab in 2009, deployed in production by 2010, and
later donated to the Apache Software Foundation in 2013, Spark was
created to overcome many of the limitations of Hadoop and Ma-
pReduce.

Unlike previous systems, which required writing interme-
diate results to disk between steps, Spark supported running mul-
tiple operations over the same dataset in memory. This made it
significantly more efficient for many workloads, especially those

14



involving iterative processing like machine learning or data explo-
ration. Spark introduced a flexible programming model through a
concept called resilient distributed datasets (RDDs), which allowed
for fault-tolerant, parallel computation.

Perhaps even more importantly, Spark offered unified APIs
in accessible languages like Python and Scala, expanding its usabili-
ty beyond Java developers. As of today, Spark supports Python, SQL,
Scala, Java, and R, making it one of the most versatile platforms in
the data engineering ecosystem.

Spark could handle batch, streaming, and interactive big
data workloads, making it far more adaptable than MapReduce. It
quickly became a popular choice for building ETL pipelines, pow-
ering streaming machine learning workflows, and scaling analytics
efforts. While Spark retained compatibility with the Hadoop Dis-
tributed File System (HDFS), its emphasis on speed, flexibility, and
developer productivity marked a major shift in how modern data
systems were built [26].

Among the earliest breakthroughs in cloud-native analytics
was Google BigQuery, launched in 2011. Based on Google’s Dremel
technology, BigQuery introduced a fully managed, serverless ap-
proach to querying massive datasets with SQL [27]. Around the
same time, Amazon Redshift, launched in 2012, brought data ware-
housing to the Amazon Web Services ecosystem, allowing teams to
migrate their analytical workloads into the cloud [28].

A few years later, Snowflake redefined expectations with
a platform designed from the ground up for cloud computing. By
separating storage from compute, Snowflake made it possible to
scale workloads up or down instantly and support multiple users or
teams without performance bottlenecks.

As these cloud data warehouses gained adoption, they were
often paired with modern business intelligence platforms like Tab-
leau, Microsoft Power BI, and Google Looker. These tools gave an-
alysts and stakeholders the ability to explore data visually, build
dashboards, and generate reports directly from the warehouse. This
convergence of scalable storage, familiar query languages, and in-

15



tuitive visualization marked the beginning of the modern analytics
era.

And that brings us to where we are today. Data engineering
is no longer just about moving data from one place to another. It’s
about designing systems that are scalable, reliable, and accessible
across entire organizations. Engineers are expected to work across
cloud platforms, orchestrate ETL/ELT workflows, maintain data
quality, and empower analysts and stakeholders through well-mod-
eled, accessible datasets.

The history of data engineering is the story of how we’ve
learned to tame complexity at ever greater scales. What began as
marks on clay tablets and ink in ledgers has evolved into massively
parallel systems, real-time pipelines, and cloud-native platforms
that power decisions across every modern industry. Each era, from
relational databases to Hadoop to Spark and the modern data stack,
emerged to solve the limitations of the last.

Today, data engineers sit at the center of this evolution.
They build enterprise-grade systems that move and transform data,
while also ensuring its reliability, accessibility, and trustworthiness
across the organization. They are connectors between raw numbers
and real-world insight.

Understanding how we got here provides context and direc-
tion for the future of our profession. The challenges we face today,
whether that be scaling machine learning systems or maintaining
data quality in real time, echo the same themes: how to handle more
data, faster, with fewer errors, and greater impact.

16



